

TEST REPORT

Test Report # 22A-014360 Date of Report Issue: December 6, 2022

Date of Sample Received: November 28, 2022 Pages: Page 1 of 20

CLIENT INFORMATION:

Company: BEL USA LLC

Address: 12610 NW 115 Avenue, Bldg. 200 Medley, FL

33178, USA

SAMPLE INFORMATION:

Product Name: Travel mug

S/S Koozie

S/S vacuum water bottle

S/S vacuum bottle

Test Type: Full Test

Model/style No.: BM30 KZSS001 TM301I SB323 VF25

PO No.: PO2209000012, PO2209000024

Buyer: -

Supplier: -

Country of Distribution: United States

Country of Origin: China

Testing Period: 11/29/2022-12/06/2022

OVERALL RESULT:

P PASS with information

Please refer to the following pages for test result summary and appropriate notes.

QIMA (HANGZHOU) TESTING CO., LTD.

Loremy. Xu

Jeremy Xu

RC-CSHZ-R026

Chemical Laboratory Supervisor

(Hangzhou) Testing Co., Ltd. • Room 401,4-5/F, Building 1,No.1213 Huoju South Road, Puyan Subdistrict, Binjiang District, Hangzhou, China Email: Labtesting@gima.com • Tel: (86) 571 8999 7158.

Test(s) marked with '\phi' was subcontracted to external laboratory.

and conclusion(s) in this report relate only to the sample(s) as received and method /regulation section(s) tested as described herein. If it is not further specified in the report, the decision rule for stating conformity is based on the QIMA decision rule.

Test Report # 22A-014360 Pages: Page 2 of 20

TEST RESULTS SUMMARY:

At the request of the client, the following tests were conducted:

CONCLUSION	TEST(S) CONDUCTED
PASS	California Proposition 65, Total Lead in Paints and Surface Coatings
PASS	California Proposition 65, Total Lead in Substrate Materials
PASS	The Illinois Lead Poisoning Prevention Act (LPPA) (410 ILCS 45/6), Total Lead in Paints and Surface Coatings of Other Items
PASS	The Illinois Lead Poisoning Prevention Act (LPPA) (410 ILCS 45/6), Total Lead in Substrate Materials of Other Items
PASS	California Proposition 65, Bisphenol A content
PASS	Client's requirement, Bisphenol A content
PASS	California Proposition 65, Phthalates (DBP, BBP, DEHP, DINP, DIDP, DnHP)
PASS	California Proposition 65, Lead and Cadmium – External Decoration
PASS	FDA 21 CFR 177.1210, Closures with Sealing Gaskets
PASS	FDA 21 CFR 177.1520, Polypropylene Copolymers
PASS	FDA 21 CFR 180.22 and 181.32, Acrylonitrile/Butadiene/Styrene Copolymers
Information only	FDA/GRAS Evaluation- Chemical Composition Analysis of Metal

Test Report # 22A-014360 Pages: Page 3 of 20

DETAILED RESULTS:

California Proposition 65, Total Lead in Paints and Surface Coatings

Test Method: CPSC-CH-E1003-09.1

Analytical Method: Inductively Coupled Plasma-Optical Emission Spectrometry

Specimen No.	8+10	12227	7222	222		Limit
Test Item	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	(mg/kg)
Total Lead (Pb)	18	1220	1944	223	222	90
Conclusion	PASS					

Note:

mg/kg =Milligrams per kilogram

LT = Less than

ND = Not detected (Reporting Limit = 15mg/kg)

Composite results are based on specimen of least mass resulting in highest potential concentration.

Remark:

RC-CSHZ-R026

The specification is quoted from client's requirement.

Test Report # 22A-014360 Pages: Page 4 of 20

DETAILED RESULTS:

California Proposition 65, Total Lead in Substrate Materials

Test Method: CPSC-CH-E1001-08.3 (Metal), CPSC-CH-E1002-08.3 (Non-Metal)
Analytical Method: Inductively Coupled Plasma-Optical Emission Spectrometry

Specimen No.	1	2	3+4	5	6+13	Limit
Test Item	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	(mg/kg)
Total Lead (Pb)	ND	46	27	ND	ND	100
Conclusion	PASS	PASS	PASS	PASS	PASS	

Specimen No.	7+12	11	- 111		500	Limit
Test Item	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	(mg/kg)
Total Lead (Pb)	ND	ND				100
Conclusion	PASS	PASS	***		***	

Note:

mg/kg =Milligrams per kilogram

LT = Less than

ND = Not detected (Reporting Limit =15 mg/kg)

Composite results are based on specimen of least mass resulting in highest potential concentration.

Remark:

RC-CSHZ-R026

The specification is quoted from client's requirement.

Test Report # 22A-014360 Pages: Page 5 of 20

DETAILED RESULTS:

The Illinois Lead Poisoning Prevention Act (LPPA) (410 ILCS 45/6), Total Lead in Paints and Surface Coatings of Other Items

Test Method: CPSC-CH-E1003-09.1

Analytical Method: Inductively Coupled Plasma-Optical Emission Spectrometry

Specimen No.	8+10					Total
Test Item	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	Limit (mg/kg)
Total Lead (Pb)	18	3223	1222	222	244	600
Conclusion	PASS	***	***		***	

Note:

mg/kg=Milligrams per kilogram

LT = Less than

ND = Not detected (Reporting Limit = 15mg/kg)

Composite results are based on specimen of least mass resulting in highest potential concentration.

Test Report # 22A-014360 Pages: Page 6 of 20

DETAILED RESULTS:

The Illinois Lead Poisoning Prevention Act (LPPA) (410 ILCS 45/6), Total Lead in Substrate Materials of Other Items

Test Method: CPSC-CH-E1001-08.3 (Metal) and/or CPSC-CH-E1002-08.3 (Non-Metal)

Analytical Method: Inductively Coupled Plasma-Optical Emission Spectrometry

Specimen No.	1	2	3+4	5	6+13	Total
Test Item	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	Limit (mg/kg)
Total Lead (Pb)	ND	46	27	ND	ND	600
Conclusion	PASS	PASS	PASS	PASS	PASS	

Specimen No.	7+12	11				Total
Test Item	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	Limit (mg/kg)
Total Lead (Pb)	ND	ND				600
Conclusion	PASS	PASS	222		222	

Note:

RC-CSHZ-R026

mg/kg=Milligrams per kilogram

LT = Less than

ND = Not detected (Reporting Limit = 15mg/kg)

Composite results are based on specimen of least mass resulting in highest potential concentration.

Test Report # 22A-014360 Pages: Page 7 of 20

DETAILED RESULTS:

California Proposition 65, Bisphenol A content

Test Method: In-House Method

Analytical Method: Liquid Chromatography-Mass Spectrometer Mass Spectrometer (LC-MS/MS)

Specimen No.		6+13	7	222	222	Client's
Test Item	CAS No.	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	limit (mg/kg)
Bisphenol A (BPA)	80-05-7	ND	ND			Not Detected
Conclusion		PASS	PASS			

Note:

mg/kg=milligram per kilogram

ND=Not Detected(Reporting limit = 1.0mg/kg)

Composite results are based on specimen of least mass resulting in highest potential concentration.

Remark:

The specification is quoted from client's requirement.

Test Report # 22A-014360 Pages: Page 8 of 20

DETAILED RESULTS:

Client's requirement, Bisphenol A content

Test Method: In-House Method

Analytical Method: Liquid Chromatography-Mass Spectrometer Mass Spectrometer (LC-MS/MS)

Specimen No.		6+13	7		222	Client's
Test Item	CAS No.	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	limit (mg/kg)
Bisphenol A (BPA)	80-05-7	ND	ND	***		Not Detected
Conclusi	ion	PASS	PASS		***	

Note:

RC-CSHZ-R026

mg/kg=milligram per kilogram

ND=Not Detected(Reporting limit = 1.0mg/kg)

Composite results are based on specimen of least mass resulting in highest potential concentration.

Test Report # 22A-014360 Pages: Page 9 of 20

DETAILED RESULTS:

California Proposition 65, Phthalates (DBP, BBP, DEHP, DINP, DIDP, DnHP)

Test Method: CPSC-CH-C1001-09.4

Analytical Method: Gas Chromatography with Mass Spectrometry

Specimen N	lo.	3+4	6+13	7+12	8+10	Limit
Test Item	CAS No.	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	(mg/kg)
Dibutyl phthalate (DBP)	84-74-2	ND	ND	ND	ND	1000
Benzyl butyl phthalate (BBP)	85-68-7	ND	ND	ND	ND	1000
Di-(2-ethylhexyl) phthalate (DEHP)	117-81-7	ND	ND	ND	ND	1000
Diisononyl phthalate (DINP)	28553-12-0 68515-48-0	ND	ND	ND	ND	1000
Diisodecyl phthalate (DIDP)	26761-40-0 68515-49-1	ND	ND	ND	ND	1000
Di-n-hexyl phthalate (DnHP)	84-75-3	ND	ND	ND	ND	1000
Conclusion	n	PASS	PASS	PASS	PASS	

Note:

mg/kg (Milligrams per kilogram) = 0.0001 % w/w (Percent by weight)

LT = Less than

ND = Not detected (Reporting Limit = 150 mg/kg)

Composite results are based on specimen of least mass resulting in highest potential concentration.

Remark:

RC-CSHZ-R026

The specification is quoted from client's requirement.

(Hangzhou) Testing Co., Ltd. • Room 401,4-5/F, Building 1,No.1213 Huoju South Road, Puyan Subdistrict, Binjiang District, Hangzhou, China Email: Labtesting@qima.com • Tel: (86) 571 8999 7158.

Test(s) marked with '\phi' was subcontracted to external laboratory.

s) and conclusion(s) in this report relate only to the sample(s) as received and method /regulation section(s) tested as described herein.

If it is not further specified in the report, the decision rule for stating conformity is based on the QIMA decision rule.

Test Report # 22A-014360 Pages: Page 10 of 20

DETAILED RESULTS:

California Proposition 65, Phthalates (DBP, BBP, DEHP, DINP, DIDP, DnHP)

Test Method: CPSC-CH-C1001-09.4

Analytical Method: Gas Chromatography with Mass Spectrometry

Specimen N	o.	11				Limit
Test Item	CAS No.	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)	(mg/kg)
Dibutyl phthalate (DBP)	84-74-2	ND				1000
Benzyl butyl phthalate (BBP)	85-68-7	ND			222	1000
Di-(2-ethylhexyl) phthalate (DEHP)	117-81-7	ND	***		1444	1000
Diisononyl phthalate (DINP)	28553-12-0 68515-48-0	ND	1.000		***	1000
Diisodecyl phthalate (DIDP)	26761-40-0 68515-49-1	ND			***	1000
Di-n-hexyl phthalate (DnHP)	84-75-3	ND		++	200 A 200 A	1000
Conclusion	n	PASS				

Note.

mg/kg (Milligrams per kilogram) = 0.0001 % w/w (Percent by weight)

LT = Less than

ND = Not detected (Reporting Limit = 150 mg/kg)

Remark:

RC-CSHZ-R026

The specification is quoted from client's requirement.

Test Report # 22A-014360 Pages: Page 11 of 20

DETAILED RESULTS:

California Proposition 65, Lead and Cadmium – External Decoration

Test Method: NIOSH Method 9100

Analytical Method: Inductively Coupled Plasma-Optical Emission Spectrometry/Inductively Coupled

Plasma-Mass Spectrometry

Specimen No.	9					Limit
Test Item	Result (µg/article)	Result (µg/article)	Result (µg/article)	Result (µg/article)	Result (µg/article)	(μg/article)
Lead (Pb)	ND	3223	122		244	1.0
Cadmium (Cd)	ND	***	***		***	4.0
Conclusion	PASS				333	

Note:

RC-CSHZ-R026

μg/article = Micrograms per article

LT = Less than

ND = Not detected (Reporting Limit = 0.4 µg/article)

Test Report # 22A-014360 Pages: Page 12 of 20

DETAILED RESULTS:

FDA 21 CFR 177.1210, Closures with Sealing Gaskets

Test Method: FDA 21 CFR 177.1210

Specim	7					
Test Item	Test	t Condition	S	RL	Limit	
restitem	Temp.	Duration	Result			
Distilled water extractive (mg/kg)	Fill boiling	Cooling to 100°F	ND	10	50	
n-Heptane extractive (mg/kg)	120°F	0.25	ND	10	50	
8% Ethanol extractive (mg/kg)	ND	10	50			
Conclu	PASS					

Note:

Temp. = Temperature

°F = Degree Fahrenheit

ppm (Parts per million) = mg/kg (Milligrams per kilogram)

LT = Less than

ND = Not detected. Result value is less than reporting limit (RL).

Remark:

The specification is quoted from 21 CFR 177.1210 Table 2 Section 3.

Test Report # 22A-014360 Pages: Page 13 of 20

DETAILED RESULTS:

FDA 21 CFR 177.1520, Polypropylene Copolymers

Test Method: FDA 21 CFR 177.1520

Specim	6					
Took Ikana	Test	Condition	6 44	RL	Limit	
Test Item	Temp. Duration		Result			
Density (g/cc)	NA	NA	0.869	NA	0.85 - 1.00	
n-Hexane extractive (% w/w)	50°C	2 hours	ND	0.4	5.5	
Xylene extractive (% w/w)	Reflux	2 hours	13.4	1	30	
Conc	PASS					

Note:

Temp. = Temperature

°C = Degree Celsius

g/cc = Grams per cubic centimeter

% w/w = Percent by weight

NA = Not applicable

LT = Less than

ND = Not detected. Result value is less than reporting limit (RL).

Remark:

RC-CSHZ-R026

The specification is quoted from 21 CFR 177.1520 (c) 3.1a.

Test Report # 22A-014360 Pages: Page 14 of 20

DETAILED RESULTS:

FDA 21 CFR 180.22 and 181.32, Acrylonitrile/Butadiene/Styrene Copolymers

Test Method: FDA 21 CFR 180.22 and 181.32

Analytical Method: Headspace-Gas Chromatography with Mass Spectrometry

Acrylonitrile Monomers:

Specimen N	13				
Tast Simulant	Test Condition		Decide	о.	
Test Simulant	Temp.	Duration	Result	RL	Limit
3% Acetic acid extractive (mg/in²)	ND	0.001	0.003		
Conclusion	PASS				

Note:

Temp. = Temperature

°F = Degree Fahrenheit

mg/in2 = Milligrams per square inch

LT = Less than

ND = Not detected. Result value is less than reporting limit (RL).

Remark:

The specification is quoted from 21 CFR 181.32 (b) (3).

Test Report # 22A-014360 Pages: Page 15 of 20

DETAILED RESULTS:

FDA/GRAS Evaluation- Chemical Composition Analysis of Metal

Test method: SN/T 2718-2010 & GB/T 20123-2006 & GB/T 223.59-2008
Analytical Method: Inductively Coupled Plasma-Optical Emission Spectrometry

Ultraviolet-Visible Spectrophotometry

C-S analyzer

Test result: The sample not meets the chemical requirements of AISI 201 stainless steel.

Specimen No.:	1	512			111
Test Item	Result (% m/m)	Result (% m/m)	Result (% m/m)	Result (% m/m)	Result (% m/m)
Carbon (C)	0.100∅				
Sulphur (S)	0.001	220	144		200
Silicon (Si)	0.38		6777.0	1	
Manganese (Mn)	9.13	Participal Control of the Control of	·	(2)	
Phosphorus (P)	0.020		:	(3444)	268
Chromium (Cr)	15.71	2000 P	5 922 5	1944-2	
Nickel (Ni)	1.19	222	3220	7000	
Type of Stainless steel Name	AISI 201	022	222		1112
Conclusion	Information only	255	(215)	7223	242

Note:

RC-CSHZ-R026

% m/m = Percent by mass

LT = Less than

Type of Stainless steel Name	С	s	Si	Mn	P	Cr	Ni	Мо	Cu
AISI 201	≤0.15	≤0.03	≤0.10	5.50~7. 50	≤0.060	16~18	3.5~5.5	-	

Test Report # 22A-014360 Pages: Page 16 of 20

DETAILED RESULTS:

FDA/GRAS Evaluation- Chemical Composition Analysis of Metal

Test method: SN/T 2718-2010 & GB/T 20123-2006 & GB/T 223.59-2008
Analytical Method: Inductively Coupled Plasma-Optical Emission Spectrometry

Ultraviolet-Visible Spectrophotometry

C-S analyzer

Test result: The sample meets the chemical requirements of AISI 304 stainless steel.

Specimen No.:	5	222			111
Test Item	Result (% m/m)	Result (% m/m)	Result (% m/m)	Result (% m/m)	Result (% m/m)
Carbon (C)	0.054				
Sulphur (S)	0.005∮	220			222
Silicon (Si)	0.47		6777.0	1977	
Manganese (Mn)	1.00	Participal Control of the Control of	·	(2000)	
Phosphorus (P)	0.021		:	(3444)	***
Chromium (Cr)	18.98	2000 P	5 922 5	19 44- 2	
Nickel (Ni)	8.40	200	3220	Neite:	
Type of Stainless steel Name	AISI 304	022	222		200
Conclusion	Information only	200	1203	% 22 3	245

Note:

% m/m = Percent by mass

LT = Less than

Type of Stainless steel Name	С	S	Si	Mn	Р	Cr	Ni	Мо	Cu
AISI 304	≤0.08	≤0.03	≤1.00	≤2.00	≤0.045	18~20	8~11		

Test Report # 22A-014360 Pages: Page 17 of 20

SPECIMEN DESCRIPTION:

RC-CSHZ-R026

Specimen No.	Specimen Description	Location		
1	Silvery metal	Interior (BM30)		
2	Silvery metal	Handle (BM30)		
3	Black foam	Inner (KZSS001)		
4	Black foam	Bottom (KZSS001)		
5	Silvery metal	Interior (TM301I)		
6	Black plastic	Lid (TM301I)		
7	Translucent soft plastic	Sealing ring (TM301I)		
8	Multi-color coating	Exterior (TM301I)		
9	Multi-color coated silvery metal	Exterior (TM301I)		
10	Transparent lacquer	Lid (SB323)		
11	Natural bamboo	Lid (SB323)		
12	Silvery soft plastic with glue	Bottom sticker (SB323)		
13	Grey plastic	Switch button (VF25)		

Test Report # 22A-014360 Pages: Page 18 of 20

SAMPLE PHOTO:

Test Report # 22A-014360 Pages: Page 19 of 20

SAMPLE PHOTO:

Test Report # 22A-014360 Pages: Page 20 of 20

SAMPLE PHOTO:

RC-CSHZ-R026

-End Report-